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Abstract: Introduction: We propose a simple, workable algorithm that provides assistance for interpreting any set of data 

from the screen of a blood analysis with high accuracy, reliability, and inter-operability with an electronic medical record. 

This has been made possible at least recently as a result of advances in mathematics, low computational costs, and rapid 

transmission of the necessary data for computation.  

Materials and Methods: The database used for this study is a file of 22,000 laboratory hemograms generated by two 

Beckman-Coulter Gen-S analyzers over a two month period in a 630 bed acute care facility in Brooklyn. All control 

samples, patient identifiers, and patients under 23 years old were stripped from the dataset. An experienced medical 

practitioner reviewed all of the data used in generating the algorithm described. The differential diagnoses were outlined 

prior to beginning the study, and preliminary studies were done to determine the reference ranges for each predictor. An 

algorithm for anomaly detection and classification via anomaly characterization is proposed. For each patient, the 

algorithm characterizes its anomalous profile and builds a differential metric to identify similar patients who are mapped 

into a classification.  

Results: The algorithm successfully classified patients into the diagnosis that were sufficient in sample size, and others are 

still under observation. The algorithm correctly classified the patients as follows: Microcytic Anemia - 99.63%, 

Normocytic Anemia - 98.03%, Mild SIRS - 73.42%, Thrombocytopenia - 99.52%, Leukocytopenia - 84.83%, Moderate / 

Severe SIRS - 96.69% and Normal - 93.18%.  

Discussion: This limited analysis of automated hematological results can be extended to the case of more complicated 

conditions than presented, and can be extended to a combination of chemistry, hematology, immunology, and other data.  

Keywords: Hemogram, Systemic Inflammatory Response Syndrome (SIRS), anemia, thrombocytopenia, structured data, 
interpretative comment, anomaly detection, anomaly characterization, non-linear differential diagnosis. 

1. INTRODUCTION 

 Healthcare-associated infection (HAI) occurs in 5%-10% 
of hospitalized patients [1] and accounts nearly 100,000 
deaths in US hospitals annually [2]. The risk of serious 
complications due to HAIs is particularly high for patients 
requiring intensive care [3, 4]. Preventing HAIs is one of 20 
Priority Areas for National Action [5], and resulted in 
preventive measures tied to financial reimbursement. In 
addition, wider use of electronic data platforms to measure, 
report, and improve quality, National Quality Forum (NQF) 
has been endorsed by the NQF endorsed measures that 
combine data from two or more common electronic sources, 
including pharmacy, and laboratory systems, and other 
records, which cover sixteen conditions, including bone and 
joint conditions, cardiovascular disease, asthma and 

respiratory illness, and diabetes [6]. 
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 The timely identification of sepsis risk in acutely ill 
patient populations depends on an effective protocol for 
screening for risk to minimize the prospect of a suboptimal 
outcome in association with the systemic inflammatory 
response syndrome (SIRS), age, and disease related 
comorbidities, to allow for early antibiotic administration, to 
minimize the emergence of antibiotic resistance, and to 
shorten the stay and costs of intensive care unit stay, and to 
avoid the development of multiple organ dysfunction 
syndrome followed by death. Severe infection and sepsis, 
common causes of morbidity and mortality in intensive care 
units, are accompanied by clinical and laboratory signs such 
as changes in body temperature, leukocytosis, and 
tachycardia. However, these signs and symptoms of systemic 
inflammation may have an infectious or non-infectious 
aetiology and are neither specific nor sensitive for sepsis. A 
similar inflammatory response occurs in patients suffering 
from pancreatitis, major trauma, and burns without 
infectious complications. Patients with systemic infection 
and organ dysfunction or shock are often difficult to 
distinguish from patients with similar clinical signs and 
laboratory findings without infection. Since these common 
clinical and laboratory measurements lack sensitivity and 
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specificity, other tests are needed to give an early marker of 
the infectious cause of a generalized inflammatory response, 
to allow early diagnosis and the use of specific treatment. 

 This is a significant basis for the study we have 
undertaken to construct a software agent that can be applied 
to the instantaneous interpretation of the hemogram, which 
carries rapidly generated information about the most 
common conditions, such as, infection, anemia, and 
disordered coagulation. The hemogram is the most 
commonly performed test done on all patients seen in the 
emergency department, in the physicians' offices, and in the 
hospital population. It is the most essential test for anemia in 
children and adults, worldwide. This could be expanded to 
subset classifications, and can be combined with chemistry 
data once a firm foundation is set. While there is an example 
of the use of neural networks in cytological analysis, this 
work is unique in exploring multiple variables predicting one 
or several diagnostic endpoints and estimated the weighted 
probabilities of the results. 

 Predictive diagnostics is an emerging science. An 

underlying principle lies in the work in bacterial taxonomy 

by Eugene Rypka that illustrated a method of forming 

clusters of elements with a high degree of similarity, with the 

provision that each cluster (and its elements) will be disjoint 

or separable to some degree from other clusters . The 

development of Latent Class Clustering by the method of 

Magidson and Vermunt [7-12] has held unfulfilled promise 

in medical sciences. The introduction of LCM models 

developed by Magidson and Vermunt allowed for examining 

the structure of combinations of ordinal and continuous 

variables in a data set, and the validity of the classes formed. 

The possibility of examining a large data set with several 

predictors and several disease states and a combination of 

them in an individual patient is elusive, and there is still a 

need to embed a classifying agent that could provide 
instantaneous second opinion. 

 Anomaly detection identifies patterns in a given dataset 

that do not conform to an established normal behavior. The 

detected patterns are called anomalies and often translated to 

critical and actionable information in several application 

domains since they deviate from their normal behavior. 

Anomalies are also referred to as outliers, deviation, 

peculiarity, etc. The anomaly detection problem, in its most 

general form, is not easy to solve. In fact, most of the 

existing anomaly detection techniques solve a specific 

formulation (instance) of the problem. The formulation is 

induced by various factors such as nature of the data, 

availability of labeled data, type of anomalies to be detected, 

etc. Often, these factors are determined by the application 
domain in which the anomalies have to be detected. 

 Usually, in addition to the challenge of detecting 

anomalies in a dataset, the analyzed data is also high-

dimensional. High-dimensional data, meaning data which 

require more than three dimensions to be represented, are 

difficult to analyze and interpret. Since the data in most 

modern systems can be described by hundreds and even 

thousands of parameters (features), then the dimensionality 

of the data is very high and its processing becomes 
impractical. 

 “Curse of dimensionality” [13] is associated with high-
dimensional data. This is due to the fact is that as the 
dimensionality of the input data space increases, it becomes 
exponentially more difficult to process and analyze the data. 
Furthermore, adding more dimensions can increase the 
noise, and hence the error and in certain situations, the 
number of observations is insufficient to produce satisfactory 
dimensionality reduction. The “curse of dimensionality” is a 
significant obstacle for high-dimensional data analysis, since 
a local neighborhood in high dimensions is no longer local. 
Therefore, high-dimensional data is incomprehensible to 
understand, to draw conclusions from or to find anomalies 
that deviate from their normal behavior. 

 Although anomaly detection identifies the anomalies in 
the system, it lacks the characterization of these deviations. 
This characterization is crucial since it provides a better 
understanding of the anomalies and it enables a more 
accurate classification of them. Anomaly characterization is 
a subject of recent researches. It aims at understanding the 
statistical, temporal or spatial behavior of the anomalies in 
order to characterize them and, as a result, provide a more 
accurate and sophisticated anomaly detection. 

 In this paper, we propose a novel method for anomaly 
detection and classification via anomaly characterization. For 
a given hemogram in the system, we characterize its 
anomalous behavior via non-linear differential diagnosis 
processes. Then, once its characterization profile, which is 
its unique differential metric, is constructed, we identify 
other anomalous hemograms that match this differential 
profile. Last, in case we deal with supervised anomaly 
detection, we use the labels of the matching hemograms to 
label and classify the given hemogram. 

2. MATERIALS AND METHODS 

 The database used for this study is 22,000 hemograms 
generated by the Beckman-Coulter Gen-S (Brea, Ca) over a 
two month period in a 630 bed acute care facility in 
Brooklyn. All control samples, patient identifiers, and 
patients under 23 years old were stripped from the dataset. 
An independent source experienced in medicine reviewed all 
of the data. The differential diagnoses were outlined prior to 
beginning the study, and preliminary studies were done to 
determine the reference ranges for each predictor. 

 Systematic Inflammatory Response Syndrome (SIRS) is 
defined as a condition in which a patient displayed any two 
of the following abnormal vital signs [14]:  

- Temperature < 36 ˚C (hypothermia) or Temperature > 
38 ˚C (hyperthermia);  

- Heart Rate > 90 beats/min;  

- Respiratory Rate > 20 breath/min;  

- Systolic Blood Pressure < 90 mm Hg;  

- White blood cell count > 12,000 cells/mm
3
 or < 4,000 

cells/ mm
3
.  

 It may be difficult to distinguish a moderate state of 
disease such as pneumonia with SIRS from the severe and 
progressive state of sepsis, septicemia or even septic shock. 
CRP [15], an acute phase protein, may reduce errors from 
using the standard clinical criteria, and is used in assessing 
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children. Procalcitonin [16] has emerged as a biomarker of 
sepsis, but it would have a high cost for overuse, making the 
algorithm based on WBC and percent neutrophils a 
necessary first step. The most commonly used screening 
methods for the presence of iron deficiency in a population 
are the measurements of hemoglobin/hematocrit concen-
tration [16]. Because iron deficiency is often the most 
common cause of anemia, the presence of microcytic anemia 
is also used as a screening tool for iron deficiency. It is 
assumed that a population with a high anemia prevalence is 
likely to also have a high prevalence of iron deficiency, if we 
remove those with chronic disease. A number of physiologic 
characteristics such as age, sex and stage of pregnancy 
influence hemoglobin concentration [16, 17]. Anemia was 
defined according to World Health Organization (WHO) 
criteria as a hemoglobin concentration below 12 g/dL in 
women and below 13 g/dL in men. 

 Our database organized to enable linking a given profile 
to known profiles. This is achieved by associating a patient 
to a peer group of patients having an overall similar profile, 
where the similar profile is obtained through a randomized 
search for an appropriate weighting of variables. Given the 
selection of a patients' peer group, we build a metric that 
measures the dissimilarity of the patient from its group. This 
is achieved through a local iterated statistical analysis in the 
peer group. We then use this metric to locate other patients 
with similar anomalous profiles, for each of whom we repeat 
the procedure described above. This leads to a network of 
patients with similar anomalous condition. Then, the 
classification of the patient is inferred from the medical 
known condition of some of the patients in the linked 
network. 

 Given a set of points (the database) and a newly arrived 
sample (point), we characterize the anomalous behavior of 
the newly arrived sample, according to the database. Then, 
we detect other points in the database that match this unique 
characterization. This collection of detected points defines 
the differential neighborhood of the newly arrived sample. 
We use the differential neighborhood in order to classify the 
newly arrived sample. This process of differential diagnosis 
is repeated for every newly arrived point. 

 Fig. (1) presents the flow of the algorithm.  

 Let 
 
X = x1,…, xm{ }  be a set of n -dimensional points in 

 
n

 where each point xi X  is described by n  variables 

 
xi = xi1,…, xin{ } . X  is the database of the system. Let y  be 

a n -dimensional point in  
n

. y  is the newly arrived point. 

 We apply the following algorithm in order to classify y :  

2.1. Random Selection of Weighting of Variables 

 In order to analyze the data using different viewpoints, 

we apply random weights on the data. A random weighting 

r  is a random vector in  
n

 that assigns a random weight to 

each parameter in the data. Xr
 is the result of the application 

of the random weighting r  on the data X . 
 
Xr = x1

r ,…, xm
r{ }  

where each point xi
r X r  is described by n  variables 

 
xi
r = xi1

r ,…, xin
r{ } , 

 
xij
r = xij rj , i =1,…,m, j =1,…,n . In the 

same way, y  is transformed into yr . There are several ways 

to choose the random weighting r . Most often, the elements 

rj  of r  are Gaussian distributed with different Gaussian 

widths, whose role is to select and weigh a small number of 

coordinates. We use the absolute values of the Gaussian 

distributed vector. 

2.2. Selection of a Coarse Neighborhood 

 In order to select a coarse neighborhood Xμ

r X r  of yr , we 

find all the points in Xr
 that are included in a ball of radius 

μ  around yr . Therefore, 
 
Xμ

r = xr | xr Xr xr yr < μ{ } . 

 

Fig. (1). Anomaly characterization and differential diagnosis. 
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Xμ

r
 is the coarse neighborhood of yr  according to the 

viewpoint that was provided by the random weighting r . 

2.3. Dimensionality Reduction and Local Statistics 

 We reduce the dimension of Xμ

r
 in order to find the most 

significant directions of Xμ

r
 corresponding to yr . First, we 

center Xμ

r
 according to yr . 

 

X μ

r
= x1

r
,…, x

|Xμ
r |

r{ } , 

 
xij
r
= xij

r y j
r , i =1,…, | Xμ

r |, j =1,…,n . Then, we compute 

the Singular Value Decomposition (SVD) of the normalized 

centered neighborhood. 
X μ

r

| Xμ

r |
= U VT , where U  are the 

left singular vectors, the diagonal elements of  are the 

singular values and V  are the right singular vectors. Since 

X μ

r
 was centered according to yr , then the singular vectors 

are the directions that correspond to yr . Observe that each 

selection of r  can introduce a different neighborhood and 

therefore the SVD should be computed independently for 

each such neighborhood since we cannot compute the SVD 

of the data once and then multiply the singular values by the 

current r . 

We sort the singular values  from larger to smaller and 

then order V  accordingly. We project the data X μ

r
 onto the 

most significant right singular vectors 
 
V1,…,V{ } .  is 

determined according to the decay point of the spectrum 

(where the singular values decay toward zero). Let  be the 

set of these projections: 
 

= { 1,…,
|Xμ
r
|
} , where 

 
i = (xi

r
V1,…, xi

r
V ) , 

 
i =1,…, | X μ

r
|  and  denotes the 

inner product operator. Similarly, we project yr  onto the 

right singular vectors and denote this projection by y . 

 Last, we calculate the distance between the points in the 

projection  to y . We denote the function that transforms 

the points in the coarse neighborhood into the distance in the 

projection by f : Xμ

r , where 
 
f (xi

r ) = i = i y , 

xi
r Xμ

r  and 
 
i =1,…, | Xμ

r | . 

2.4. Local Discrimination 

 In this step, we try to discriminate yr  from its coarse 

neighborhood Xμ

r  in the projection . A good 

discrimination will significantly separate yr  and some of its 

very close neighbors (its peer group) from the rest of the 

coarse neighborhood. A significant separation means that 

there is a big gap between yr  (and its peer group) and the 

majority of its neighborhood. In this case, we consider the 

random weighting r  as discriminative and we use it in the 

next steps in order to construct the differential metric. On the 

other hand, if no significant gap is found, yr  cannot be 

separated from its neighborhood, the random weighting r  is 

not discriminative, and therefore we ignore it. 

 We sort the distances  from smaller to larger and 

denote the ordered distances by: 
 
= { 1,…, |Xμ

r |} , where 

 
1 < 2 <… < |Xμ

r | . Then, we look for a significant jump in 

the rate of change of . The existence of this spike implies 

that there is a significant gap and r  is discriminative. 

Otherwise, yr  is not separated from its neighborhood. If r  

is discriminative, we denote by r  the normalized radius of 

the peer group of yr  that is centered with yr . r  introduces 

a weight for the random weighting r . A small value of r  

implies that the peer group of yr  is very unique and 

therefore r  is more discriminative than when r  has a big 

value. 

2.5. Construction of a Discriminative Matrix for 

Anomaly Characterization 

 In the first step of this algorithm, we applied random 

weighting on the data. Xμ

r
 is the selected coarse 

neighborhood of yr  that was provided by the random 

weighting r . Different random weightings provide different 

viewpoints of the data and as a result, different coarse 

neighborhoods of yr  are selected. In the fourth step of the 

algorithm, we decided whether the random weighting r  is 

discriminative or not. The whole process (steps 1-4) depends 

on the random weighting r . Therefore, steps 1-4 are 

repeated several times using different random weightings to 

search for the appropriate random weightings. Each random 

weighting is classified as discriminative or not. In this step, 

we fuse all the discriminative random weightings and 

construct a discriminative matrix. 

 Let 
 
r1,…, rk{ }  be the set of k  discriminative random 

weightings that were found. We build the discriminative 

matrix R  and denote the ith  row of R  by: 

 
Ri (R1

i ,…,Rn
i ), i =1,…, k . We denote by 

 
= 1,…, k{ }  

their corresponding peer groups' radii. R  and  

characterize the anomalous profile of y . 

2.6. Selection of the Differential Neighborhood 

 In this step, we select the differential neighborhood of y  

that defines its differential peer group. First, we use the 

differential matrix R  of y  and its corresponding radii  to 

calculate the distance between y  to the points in X . Then 

we discriminate y  from X  to find its differential peer group. 

 We denote the distances between y  to the points 

 
xi X, i =1,…,m  by 

 
i

1

k j=1

k
xi y j

2 , where 

 

xi y j
2 =

p=1

n 1

j

(Rp
j )2 (xip yp )

2
. 
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 We sort the distances  from smaller to larger and 

denote the ordered distances by: 
 
= { 1,…, m} , where 

 1 < 2 <… < m . As described in step 4, we look for a 

significant jump in the rate of change of . We use this 

spike to discriminate y  from X  and to select its differential 

peer group. We denote by Xμ X  the differential 

neighborhood of y , as discriminated by the spike, according 

to the differential matrix R  and the corresponding radii . 

2.7. Classification 

 In case the dataset is labeled, we use the labels of Xμ  in 

order to classify y . Let 
 
L = {l1,…, lq}  be a set of classes 

(labels). For each point xi X , the corresponding label 

vector ci  is constructed: 
 
ci (ci1,…, ciq ) , where 

cij = 1 if xi has the label l j
0 otherwise.

, 
1 j q

. 

 Each point can be associated to several classes, and 

therefore have multiple labels. ci  denotes the set of classes 

that xi  belongs to. In order to classify y  according to Xμ , 

we build a corresponding label vector 
 
cy = (cy1,…, cyq ) , 

where cyj = xi Xμ
cij e

i , 1 j q . The classification of 

y  is the stochastic vector 
 
py = (py1,…, pyq ) , where 

pyj =
cyj

s=1

q
cys

. py  denotes the probability of y  to belong to 

each one of the classes 
 
{l1,…, lq} .  

3. RESULTS 

 The reviewer labeled manually 4,900 hemograms that 

were used as the database of the algorithm. 2,200 unlabeled 

hemograms were used as the testing set. The algorithm 

labeled each testing hemogram according to the labeled 

database. The reviewer analyzed the results of the algorithm 

regarding the testing set. 

Table 1 shows the overall accuracy results. The overall 

accuracy measures the accuracy of the results of the 

classification as follows:  

Table 1. Overall Accuracy Results 

  % of patients (hemograms)  

Full agreement  95.70  

Partial agreement  4.14  

Disagreement  0.16  

 

1. Full agreement: the algorithm identified all the labels 

that were given by the reviewer to the patient;  

2. Partial agreement: the algorithm identified some of 

the labels that were given by the reviewer to the 

patient;  

3. Disagreement: the algorithm did not identify any of 

the labels that were given by the reviewer to the 

patient.  

 Table 2 shows the class accuracy results. The class 
accuracy measures the detection rate for each class of 
anomalies according to the labels that were given by the 
reviewer and the labels that were given by the algorithm. 

DISCUSSION 

 This is the first application of anomaly detection and 
characterization to be applied to medical laboratory data, 
specifically the hemogram. Our results are quite remarkable 
as shown in the tables. Patients with iron deficiency anemia 
and normocytic anemia, patients with moderate and severe 
SIRS, and patients with thrombocytopenia are easily 
segmented. Those with microcytic indices who had 
thalassemia are readily identified using the ratio of the MCV 
to RBC count, but the sample is too sparse for inclusion in 
the prediction model. Even though the patients with SIRS 
had defining features, they are not homogeneous, as some 
have hemolytic anemia (normocytic) and/or 
thrombocytopenia, and there are a recognizable group of 
patients who have either a normal or a mild leukocytosis. 
They are recognized by the high percentage population of 
neutrophils. The childhood population and newborns would 
present issues of either lymphocyte population or 
neutropenia, quite unlike the adult population, not to mention 
the nucleated red cells that require a corrected leukocyte 
count. Although there were unsurprisingly more than a 
single diagnosis in a number of cases, such as, microcytic 
anemia with mild SIRS, the separation of combinatorial 
classes is not the purpose of this phase of the study. 

 The use of computational methods has increased in 
volume and complexity in the last decade. Much of this work 
is done with large databases for epidemiological studies. The 
most similar example, but different in intent and complexity 
is a data mining study predicting risk of mortality using the 
basic metabolic panel carried out using almost 280,000 adult 
patients seen at any Intermountain Healthcare facilty 
between 1999 and 2005 who had at least one basic metabolic 
panel (BMP), and subsequent follow-up at 30-days, 1-year, 
and 5-years with a mortality followup record. The 
researchers used a logistic regression model, and the model 
was validated [18]. The study uses a scaling of test results to 
be used in a logistic regression and further modeled using an 
ROC curve. The resulting score could be applied to predict 
for each patient. The BMP that includes the measures of 
glucose, electrolyte balance, and kidney function is 
performed on virtually all patients, like the CBC. While our 
study does not consider the binary question either dead or 
alive, the model of the study referred to is binary, and is 
parametric. Our study is beyond the bounds of a two class 
prediction, and it is nonparametric, important for reducing 
errors from nonlinearities. The artificial neural network is 
used specifically with the preference for a nonlinear 
discriminant solution, but also has limitations in the number 
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of outputs, which is not an issue with our proposed model 
and the class of structural equations models. 

 We are able to find a number of applications of anomaly 
detection in engineering problems, mainly fault tolerance 
[19-23]. An application in medical studies is work on blood 
oxygen saturation and heart rate in obstructive sleep apnea 
[24-26]. 

 In order to have clear results, we selected the groups of 
sufficient size that the results would be valid. In the case of 
leukocytosis - elevation of neutrophils, lymphocytes, or 
indeterminate - we pooled severe and moderate SIRS, 
indicative of pneumonia, abdominal infection, or sepsis, into 
one pool, and kept mild SIRS, elevation to about 13,000, in 
another pool. The percent of neutrophils and lymphocytes is 
a criterion that would be needed as a next step, even though 
it is very useful. The ability for measuring accurately the 
amount of the subpopulation of immature neutrophilic series 
was technically limiting in the method used. The small size 
of the leukemia population and requirement for peripheral 
smear for final secondary analysis required that we not 
include that in the calculations. The requirement for a 
corrected neutrophil count on children because of immature 
nucleated red cells was sufficient reason for limiting the 
study to patients 23 and older. 

 This limited analysis of automated hematological results 
can be extended to the case of more complicated conditions 
than presented, and can be extended to a combination of 
chemistry, hematology, immunology, and other data, and is 
currently being compared with the findings of a large 
database of results from the Sysmex series hematology 
analyzer with measurement of immature granulocytes, and 
the manual differential. As this method is anticipated to be of 
practical value as a presentation of an expected assessment to 
the practicing physician (as in a dashboard of an airplane), 
and unanticipated benefit to the laboratory is a considerable 
reduction in necessary manual differentials in a highly 
productive laboratory, with possible future applications to 
communication of critical findings to medical staff. 
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